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ABSTRACT

Jentink, Thomas Neil. MSAA, Purdue University, August, 1989. Formulation Of

Boundary Conditions For The Multigrid Acceleration Of The Euler And Navier Stokes

Equations. Major Professor: William J. Usab, Jr.

An explicit, Multigrid algorithm has been written to solve the Euler and Navier

Stokes equations with special consideration given to the coarse mesh boundary

conditions. These are formulated in a manner consistent with the interior solution,

utilizing forcing terms to prevent coarse-mesh truncation error from affecting the fine-

mesh solution. A 4-Stage Hybrid Runge-Kutta Scheme is used to advance the solution

in time, and Multigrid convergence is further enhanced by using local time-stepping

and implicit residual smoothing. Details of the algorithm are presented along with a

description of Jameson's standard Multigrid method and a new approach to formulating

the Multigrid equations. This approach utilizes a general filtering operator to derive the

coarse-mesh equations in partial differential form, and is reduced to Jameson's

Multigrid scheme by specifying a particular discrete filter. The correct boundary

transfer operator is formulated from this filter, and forcing terms are then derived for

the coarse-mesh boundary conditions. Results are presented for inviscid channel flow

of subsonic, transonic, and supersonic speeds over a circular-arc bump, viscous fiat plat

flow, viscous flow over a circular-arc bump, and inviscid and viscous flow over a VKI

gas turbine rotor blade. These results will show the importance of the correct



×i

implementationof thecoarse-meshboundaryconditionsby comparison of convergence

levels with and without the boundary forcing terms that were derived.



CHAPTER 1 - INTRODUCTION

Advances in computer technology over the past few years, coupled with the rising

cost of experimentation has resulted in the increased role of computational methods in

the design process. The improved algorithm development occurring along with these

advances has made it possible to surpass the level of approximation provided by

potential solvers. The higher order Euler and Navier-Stokes equations can now be

solved for a number of more realistic problems covering a wide range of

complexity. [l_l Finite-volume, explicit time-stepping schemes have been used quite

extensively in solving these problems for both the Euler and Navier-Stokes

equations. [1-9l Explicit schemes are generally favored over implicit schemes due to

their ease of implementation, minimum number of computations, and low storage

requirements. Although explicit schemes have been successful, their main disadvantage

over implicit schemes is their stability limit. Whereas an implicit scheme is by theory

unconditionally stable and therefore able to use very large time-steps, an explicit

scheme can be quite limited by the maximum allowable time-step that may be used. In

order to retain the advantages of an explicit scheme, while still reaching solutions

efficiently, a large amount of research has focused on improving the performance of

explicit time-stepping schemes.



As part of this effort, a class of hybrid Runge-Kutta time-stepping schemes was

developed by Jameson. [6] Runge-Kutta schemes are usually chosen for their high level

of time accuracy, but in the interest of steady-state solutions, Jameson neglected time

accuracy and tuned the Runge-Kutta coefficients to provide the largest possible time

step and the best error damping characteristics. To further enhance the convergence of

steady-state solutions, three standard acceleration methods are also used:

Local time-stepping

Implicit residual smoothing

-- Multiple-Grid and Multigrid Acceleration

The time-step for a given computational cell is proportional to its size.

Consequently, the convergence of a scheme may be severly limited by mesh geometry

rather than the actual physics of the problem if very small mesh spacings are present,

since the smallest time step is the limiting factor in global time-stepping (required for

time-accurate problems). For steady-state solutions, since time-accuracy is not

required, the solution in each cell may be marched in time by its local time-step, greatly

increasing convergence rates.

Implicit residual smoothing is a method introduced by Jameson [61 for the Euler

equations in which the stability limit (CFL number) may be increased to a large degree

by replacing the residual at each point by a implicit average based on the residuals in

the rest of the domain. This smoothing, used in conjunction with Jameson's hybrid

Runge-Kutta schemes can increase the maximum allowable CFL number by three times



over that given by the stability limit. [6]

Multigrid is an acceleration tool first developed by Achi Brandt [t°'tl] to increase

convergence rates for elliptic-type problems. In elliptic problems, high frequency

errors are eliminated quickly by the relaxation scheme. The limiting factor on

convergence is the low frequency errors that remain. In order to more rapidly eliminate

these low frequency errors, Brandt utilized a sequence of meshes made up of

successively larger cells. Relaxation sweeps are made on the initial, finest mesh,

effectively damping the high frequency errors (wavelengths on the order of the mesh

spacings). Then, the solution is transferred by an appropriate interpolation scheme,

called a transfer operator, to the next coarser mesh, where the relaxation sweeps are

again performed. Now, since the cells are larger, the relaxation scheme removes error

frequencies that are lower (longer wavelengths) with respect to the fine mesh solution.

When the solution is transferred back to the fine mesh, a large amount of the low

frequency errors have been eliminated by the relaxation on the coarse mesh levels. On

the coarse levels, forcing terms (source terms added to the coarse-mesh equations) are

utilized to prevent the coarse-mesh accuracy from affecting the level of accuracy of the

final fine-mesh solution. Brandt's Multigrid scheme is labelled the Full Approximation

Storage (FAS) scheme due to the fact that the full solution from the finest mesh is

transferred to the coarser mesh levels.

The first application of this type of acceleration scheme for the hyperbolic Euler

equations was introduced by Ni. [12] His Multiple-Grid acceleration scheme differs

from Brandt's FAS Multigrid scheme in that only changes in the fine-mesh solution,



versus the full solution, are transferred to the coarse mesh levels.

Jameson Is] was the first to apply Brandt's FAS Multigrid scheme to the Euler

equations, and it is this scheme upon which much of the present work is based. The

success of Multigrid acceleration for the Euler equations is based on the premise that

wave propagation, in addition to error damping, determines convergence rates. As the

problem is solved on increasingly coarser mesh levels, larger time-steps may be used,

thus propagating the errors out of the domain at a faster rate, and speeding convergence.

Used in conjunction with Jameson's hybrid Runge-Kutta schemes, high frequency error

damping, characteristic of these schemes, is also used. The time-stepping schemes are

tailored to provide good high frequency damping characteristics, which, when applied

on the coarse mesh levels, help to eradicate the low frequency errors.

Multigrid Acceleration has proven to be a robust and reliable tool for the Euler

equations, [2'3'6'12-161 with recent advances also being made for the Navier-Stokes

equations. [13-_1 However, improvements are still required, especially for the Navier-

Stokes equations. The addition of the shear-stress terms and the high mesh stretching

which accompany these problems tend to decrease the efficiency of Multigrid. The

theory behind Multigrid for the Euler and Navier-Stokes equations has not reached as

high a level of development as it has for elliptic problems. It essentially lacks a general,

theoretical approach, and many times tends to be problem dependent.

An area which to date has not been explored to any large degree is the effect of the

coarse-mesh boundary conditions on convergence. Enforcing the boundary conditions

on the coarse-mesh levels with coarse-mesh accuracy will affect the fine-mesh solution



due to the higher truncation error on the coarse levels. For interior points, forcing terms

arc added to the equations for this very reason, and it is the present hypothesis that

similar terms are required for the boundary conditions.

It is therefore the objective of this work to obtain a correct, consistent formulation

of the coarse-mesh boundary conditions and to determine the effect of these boundary

conditions on the convergence of both inviscid and viscous problems. As an initial

step in obtaining these conditions, a new, general approach to formulating the Multigrid

equations is given. The equations on the coarse mesh levels are viewed as a filtered

sub-set of the fine mesh equations, since certain information is, in effect, filtered out on

the coarse levels due to the lack of mesh resolution. In this context, a filtering operator

is first defined. The coarse mesh equations in partial differential form are then derived

by filtering the original partial differential equations one or more times. The

specification of a discrete filter then gives the procedure for transferring the fine-mesh

solution to the coarse mesh. The coarse-mesh equations in discrete form are

constructed through a finite-volume approximation of the filtered coarse-mesh

equations. Although this method may be used to obtain any number of coarse-mesh

discretizations based on how the filter is defined, one choice reduces the present

formulation to the standard Jameson Multigrid scheme. Further, the present analysis

leads to the correct formulation of boundary conditions on the coarse levels, without the

coarse-mesh truncation error affecting the fine-mesh solution.

The work presented in this thesis is divided into the following chapters. In Chapter

2, the governing equations are presented. The 2-dimensional Euler, and full, laminar,



Navier-Stokesequationsarc describedalong with theirnon-dimensionalizationwith

respect to fi'eestream conditions. The equations are then given in a general, non-

orthogonal coordinate system. Chapter 3 gives the important aspects of the numerical

method. Details of the finite-volume cell-centered spatial discretization, 4-stage hybrid

Runge-Kutta time-stepping scheme, and blended 2nd and 4th difference artificial

dissipation model are described. In Chapter 4, the boundary conditions for inviscid and

viscous flow are given. Both a characteristic variable formulation and a Riemann

Invariant formulation are given for the far-field boundaries. Chapter 5 presents the

methods that are used to accelerate convergence. Jameson's Multigrid scheme is

presented, and implicit residual smoothing for 2-dimensional problems is described.

The general Multigrid formulation followed by the derivation of the boundary transfer

operator and the coarse-mesh boundary conditions is given in Chapter 6. In Chapter 7,

results are presented and discussed for inviscid channel flow over a bump for subsonic,

transonic, and supersonic speeds, flow over a viscous, flat plate, viscous subsonic

channel flow over a bump, and inviscid and viscous flow over a VKI gas turbine rotor

blade. Chapter 8 summarizes the work that was performed and presents the

conclusions that were drawn.



CHAPTER 2 - GOVERNING EQUATIONS

2.1 Navler Stokes Equations

The two-dimensional, unsteady, compressible Navier Stokes equations may be

written in conservative form as follows:

0U OF 0(3 DR 0S

__ + '_x + /)y - _x + /)y (2.1)

where •

kul I°ul I:v lpu2+ P G =

_-,_v,_-, 0uv, lo_+_r
L; L(E+p)uJ L(E÷p)vJ

{° } f ° }R = Xxx S = Xxy
'_xy '_yy

U'_xx + V'_xy -- qx '_xy + V'_yy -- qy

(2.2)

and where, based on Stokes Hypothesis:

2 Ou 3v

Xxx = _l,t(2 _xx 3y )

au av)
Xxy= .(-_y + ax

2 Ov Ou

Xrs = _-it(2 Oy Ox )

3T _T
qx = - _'SZ"_ qy = - K:-577..

uy

(2.3)

with density, O, cartesian velocity components, u, v, total energy per unit volume,

E, pressure, p, temperature, T, viscosity coefficient, It, and the coefficient of



thermalconductivity, l(. Pressure is defined by the equation of state for an ideal gas •

[EX ]p = pRT = (¥- 1) - _p(u + v 2) (2.4)

where ¥ is the ratio of specific heats. Assuming laminar flow, the equations are closed

by using Sutherland's Viscosity Law relating the viscosity to the local temperature: [eli

3

1

ctT
Ix= _ (2.5)

T+ c2

where for air and moderate temperatures:

cl - 1.458xI0 _ kg/(m sec °K 1/i) c2 = 110.4 °K

The coefficient of thermal conductivity is expressed in terms of the local viscosity and

the Prandtl Number Pr "

C_.pIx
)c - (2.6)

Pr

where C_.p is the specific heat at constant pressure.

In this work, the governing equations are non-dimensionalized with respect to a

reference length, L, and freestrearn conditions, p., V., T_, and It,.

* X * y * U • V , t V.
x =-- y =-- u =_ v =_ t -

L L V. V. L

p'= P---@- p*- P T*= T- E*- E
p. p.v2. T. p.v
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Where * denotes non-dimensional quantities. Under this non-dimensionalization, the

Euler equations retain their original form and a constant, 1/Reu, appears before the

viscous terms in the Navier-Stokes equations.

,
-_y* ReL L_x* + J (2.7)

where ReL is the reference Reynolds number defined as:

p.u.L
ReL - (2.8)

}.t**

The non-dimensional temperature is derived from the equation of state (Eq. 2.4) •

7M2,. p*
T* = (2.9)

I

P

And the non-dimensional viscosity and coefficient of thermal conductivity may be

derived as:

iii

• p.!¢ = (2.10)
Pr (T- 1) M 2...

where T** is a free-stream reference temperature. The equations for the non-

dimensional pressure and other thermodynamic variables remain the same as their

dimensional counterparts. For convenience, the * is dropped from the notation at this

point, and all variables can be assumed to be non-dimensional.

In order to perform computations over general mesh topologies, the above cartesian

(x,y) system of equations can be transformed to a non-orthogonal system (_, q ),



l0

where:

_=_(x,y) _=_ (x,y)

Equation (2. l) becomes:

ReL J "_" J

(2.11)

where J isthe Jacobian of the transformationand isgiven by:

l

T = ×_ y_ - xn y_

Given the metric relationships:

the Navier Stokes equations in general coordinates become:

b""_+"_'+ brl - ReL "_"+'_"

(2.12)

(2.13)

(2.14)

U=U/J

F: = ( _xF + _yG )[ J = Y-nF - x_G

(_= (rlxF+ rlyG )/J= r_G - y_F

13-,= ( _x R + _y S )/J = y_ R - x,q S

= ( rhR + 'qyS )/J = x_S - yt, R

(2.15)



II

CHAPTER 3 - NUMERICAL METHOD

3.1 Finite Volume Formulation

A discrete form of Eq. (2.14) is found using a control volume formulation in which

the solution values are stored at the cell centers. First, Eq. (2.14) is put into integral

form for the computational control volume, V:

Then, integration over the volume, A_An, gives :

If# 0 dV + I [Fi_ + At)- Fi_) ]dn + I [girl+ An) - G(n) ]d_ = (3.2)
0t

Applying the Mean Value Theorem to the control volume in Figure 3. I, F: and G for

each side of the control volume may be given by their values at each particular cell face

center. Eq. (3.2) becomes:

0-i'0II_' [l d_t + [ fzi +',_. j - Fi-'/i. j ] Arl + [ Gi. j+',_ - Gi.j _ ,A ] A{ = (3.3)
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i,j+IA
3 z 2

, _. i+V2,j

_ 1
4 i,j-Y2

Figure 3.1. Cell Centered Control Volume Notation

Integrating the first term in Eq. (3.3) produces an ordinary derivative in time for the

solution U at each cell, (i,j):

_ IJdV= b J-t [AV dU ]0t J'f, _ -_- f J"U( d_drl ) = dt i.j
(3.4)

where AV is the cell area, which is defined in this work by the cross-product rule as :

AV - -I/2 [(x2 - x,4)(yt- Y3) - (xt - x3)(Y2 - Y4) ] (3.5)

The Jacobian of the general coordinate transformationdescribes the ratioof the cell

areas between the (_, rl) coordinate system and the (x, y ) coordinate system.

Since the cell area in the transformed computational domain is equal to I

(At = Arl = l ), AV can alsobe definedas theinverseof theJacobian :

I

AV = -.j- = xg Yn - Yg xn (3.6)

The second term in Eq. (3.3) may be expressed in F and G as:

[ Fi + 1/_.j - F:i_ L/2.j ] Arl = [( YrlF - x-qG )i+ la. j - ( yrlF- x_G )i_ _,_.j] An = (3.7)

= ( FAy - GAx )i + l,'i. j - ( FAy - GAx )i - '_i. j

Treating the remaining terms of Eq. (3.3) in the same manner produces a spatially
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discretesystemof ordinarydifferential equationsfor the cell shown in Figure 3. I :

where:

dU] - I-_ i.j- AVi. j
[ ( FAy - GAx )i + 'a. j - ( FAy - GAx )i- ,,_. j +

+ ( GAx - FAy )i. j + ,,_ - ( GAx - FAy )i. j- ,,_ +

- ( RAy - SAx )i + _. j + ( RAY - SAx )i- ,,_. j +

- ( SAx - RAy )i, j + z,_+ ( SAx - RAy )i. j - _,_]

(3.8)

Axi+tA,j =X 2-x 1

Axi.j+t A =x 2 -x 3

Ax i_l,h,j--g 3 -x 4

Axi, j-th = Xl - x4

Ayi + ,_. j = Y2 - Yl

Ayi. j + i/a = Y2 - Y3

Ayi- _. j "- Y3 - Y4

Ayi. j - t/a = Yl - Y4

(3.9)

In the present work, the convective terms, Fi + _,_.j and Gi + ,a. j, are obtained from the

average of the conservative variables, U, existing in the two cells adjacent to the face.

For linear problems, this is equivalent to averaging F and G. However, since F and G

are non-linear functions of U, Turkel [7] claims that averaging U instead helps to couple

the even and odd points throughout the domain. To save on the number of

computations that must be performed at each point, pressure is stored at the cell centers

and averaged to the face.

Fi+ tA. j =

Ir(pu)2 + pi+_,_, j

[. P )i+lh,j

9 i+V2 .j

Ei+IA,j

Gi + t,_. j =

(pv)i + _, j

[(pu)(pv) ]
P i+t&.j

-- ji
+ Pi+_a, j

+1_,j

Ei+_,_. j

(3.10)
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where

'[ ](p)_+ _. j = _- (P)_. _. j + (p)_. j

1 [(pu)i+,, +(Pu)i, ](pu)i +,_, j = T J J

(pv)i + ,,_. j = _" (pv)i + I. j + (pv)i. j

(E)i+l_.j=_- (E)i+l.j +(E)i.j

(P)i + _h. j = _" (P)i + 1, j + (P)i. j

(3.11)

Quantities at the other faces are defined in the similar manner.

The evaluation of the viscous fluxes for each cell requires that the fast differences

of u, v, and T be defined at the center of each cell face. Spatial discretization of

these derivatives for the point ( i + ½, j ) is performed by integrating over a surface

bounded by the two adjacent cell centers, (i,j) and (i+l,j), and the endpoints of their

dividing face, [171 shown in Figure 3.2.

3

/x
/ N

\ /
\/

Figure 3.2. Control Volume for Evaluation of Shear Stress Derivatives at face (i+l/2,j)

For this control volume formulation, the following relationship may be derived for any

variable, f:
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(3.12)

Where V and/)V are the surfacearea and boundary, respectively, of the control

volume in Figure 3.2. The line integrals are approximated by trapezoidal integration,

which gives a discrete representation for the first derivatives of f:

/)f 1 4

_"_"= 2A-""_ _ (fk+l +fk)(Yk+! --Yk )
k=-I

bf 1 4
D

Oy 2AV _ (fk+l +fk)(Xk+l --Xk)
k=-I

Wherc

(3.13)

f5 = fl x5 = Xl Y5 = Yl

Using this method, the shear stress terms can be evaluated in their cartesian form

without the need for a general coordinate transformation. When evaluating these

derivatives at boundaries, such as the (i,j-1/2) face of the first interior cells, the center of

the image cell must have specified coordinates for the above finite-volume formulation.

To avoid difficulties of defining these coordinates, such as in areas of high curvature, a

different approach is utilized at the boundaries. The viscous control volume of the

(i,j-1/'2) face of a cell along the boundary is collapsed to a triangular volume, shown in

Figure 3.3, in which the first derivatives required at the boundary are obtained directly

by integration over the truncated control volume. This results in a l st-order accurate

evaluation of the boundary shear stress terms, which is essentially equivalent to

performing one-sided differencing there.
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4

///

_2

- ////

/
%

/

1

Figure 3.3. Control Volume For Boundary Shear Stress Evaluation

The finite-volume, cell centered formulation for the Navier-Stokes equations

defined in this section is equivalent to a central difference scheme, and is 2nd order

accurate for sufficiently smooth meshes. [6]

3.2 Time Stepping Scheme

The time-marching algorithm used in this research is a 4-stage Runge-Kutta

scheme. Typically, multi-stage time-stepping schemes such as these are chosen for

their high order of time accuracy. However, since the goal of this research is steady-

state computations, time accuracy is not a requirement.

This 4-stage scheme is one of a class of hybrid multi-stage schemes all of which

were developed by Jameson [6! specifically for their damping and stability

characteristics. The coefficients of the scheme are tailored to give the maximum

allowable time step and to provide optimum damping of the high frequency error

modes. The attenuation of these modes is essential for the success of rapid steady-state

convergence.

The semi-discrete system of ordinary differential equations in Eq. (3.3) may be
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rewritten as

Where C (U)

dU - 1
- [ C (U) + V (U) - D (U)I (3.14)

dt AV

is the convective flux,

v (u)

C (U) = (FAy - GAx)i + a_. j - (FAy - GAx)i _ vi. j +

+ (GAx - FAy)i. j + tA -- (GAx - FAy)i. j _ t,_

is the viscous flux,

(3.15)

and D (U)

V (U) = - (RAy - SAx) i + _. j + (RAy - SAx) i _ 1_. j -

- (SAx - RAy)i, j + t&+ (SAx - RAy)i. j _ 1/2

is the artificial dissipation which will be defined later in section 3.3.

(3.16)

The 4-stage Runge Kutta scheme used to complete the discretization of Eq. (3.11) is

implemented in the following manner :

U (0) = U n

U (1) = U (0)

U (2) = U _o)

UO) = U <o)

U(4)= u(O) ct4At [7,q c (0 (3))

un+ 1 _. U(d,)

o_1 At
AV I C (U(°)) + V (U (°)) - D (U(°))]

0t2 At
A_7 [ C(U('))+V(U(°))-D(U(°))]

AV C (0 (2)) + V (0 (°)) - D (0 (°))

+ V (U (°)) - D (U(°))]
J

(3.17)

The superscripts in parentheses refer to the particular stages of the scheme, and where

ai are the coefficients designed to give optimum stability and damping to this
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a1=I/4 a2 =1/3 a3=1/2 _-1

Note that the viscous fluxes and the artificial dissipation are evaluated once and held

constant throughout the time step. Other Runge-Kutta schemes may possess better

damping characteristics or allow larger time steps, but the single evaluation of the

artificial dissipation in this 4-stage scheme produces substantial savings in

computational time.

This 4-stage Runge-Kutta scheme has been used with good success in many

steady-state computations, [6l[s][13][14][7][22l and it's high frequency damping

characteristics make it ideal when used in conjunction with multigrid acceleration. [6l

3.2.1 Stability Criteria

Turkel [7] derives the stability limit for the Euler Equations based on the maximum

eigenvalues of the convective Jacobian matrices. Ignoring the effect of artificial

dissipation on the equations, the maximum allowable time step for a general, multi-

stage scheme is given there as :

At < AV (CFL)
2 2 2 2 (3.18)

luYn - vxn I + Ivx_ - uy_l + ( x_ + y_ + x n + Yn + 2lx_xn + y_yn I)Vla

An approximation of which is :

Av (CFL)

At< _ +_ (3.19)

Where a is the speed of sound, AV is the cell area, and CFL is the Courant number for
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stability basedon a Fourier analysis of the I-D model equation :

U t + U x + I.t/_X 3 Uxxxx = 0

_._ and L_ are the maximum

respectively, and are defined as :

(3.20)

local wave-speeds in the _andrl directions,

_'g= luyn-vxnl+a Yn+Xn

Xn-- Iv×_-uy_l+a y_+x_

(3.21)

The maximum CFL number that may be used is dependent on the type of hybrid

Runge-Kutta scheme that is used. Factors affecting this stability condition are the

Runge-Kutta coefficients, 0q, the number of evaluations of the artificial dissipation, the

number of Runge-Kutta stages, and the amount of smoothing, _. The maximum CFL

number for an m-stage scheme in which the coefficients are optimized for the largest

time step is [61 :

CFL < m-1 (3.22)

For the present 4-stage scheme with a single evaluation of the artificial dissipation, Eq.

(3.17), with _ = 1/32, gives the condition :

CFL < 2.6 (3.23)

For the Navier Stokes equations, diffusive effects must be considered in the stability

analysis as well as the convective effects. In Reference [18], the Navier-Stokes time

step is given as :
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AteAtv ]At = CFL At¢ + Atv

where At,: is the convective time step given in Eq. (3.15), and At,,

step :

(3.24)

is the viscous time

Atv = Kv AV
(3.25)

Kv is a specified empirical constant that weights the importance of the viscous terms

over the convective terms and is given as 0.25. [18] _Lv is the sum of the maximum

spectral radii in the _ and 1] directions of the viscous operator in the Navier-Stokes

equations •

k_ = k,,t + X,,, (3.26)

Whcl"e

and where

respectively:

_ = ReL1-AV Pr P + AIAm

_ RelAv Pr P

(3.27)

AlandAm are the lengths of the cell in the _and_ directions,

2 2Al = xg + y_

Am= x_ + y_

(3.28)
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For the viscous cases considered in the present work, the maximum CFL number

used with the above viscous time step criteria was approximately the same as those for

the inviscid cases.

3.3 Artificial Dissipation

Central difference schemes require the addition of artificial dissipation to damp the

high frequency error modes that occur as a result of the odd-even point decoupling.

Artificial dissipation is also required for shock capturing and to damp oscillations in

other high pressure gradient regions, such as stagnation points. Even though the

viscous terms in the Navier-Stokes equations provide physical dissipation and would be

capable of resolving the structure of a shock, mesh spacing in the region would need to

be on the order of the molecular mean-free-path. This is not practical from a

computational standpoint, and therefore artificial dissipation is still required to capture

shocks. Also, artificial dissipation is required to damp instabilities that may occur in

regions dominated by the convective terms.

In the present work, the dissipation model is based on that introduced by Jameson,

Schmidt, and Turkel. [5] It employs modifications by Swanson and Turkel, [221 and

Martinelli, [?'3] to improve accuracy and to increase convergence rates for viscous

solutions. It is a blended 2nd and 4th difference adaptive dissipation scheme that

provides a base level of 3rd order dissipation throughout smooth regions of the flow,

and decreases to I st order in the vicinity of shocks and other high pressure gradient

regions.
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The conservative form of the equations is maintained by evaluating the dissipation

at each cell center by summing the dissipative fluxes in each coordinate direction. The

basic form of the dissipation, Di. j, for each cell is:

Where Ui. j

Di. j = - d_ + dr_ - dr_ Ui. j (3.29)

is the vector containing the conservative variables, and d 2 and d 4 arc

the 2nd and 4th adaptive difference operators. For cell i,j, shown in Figure 3.1, these

are defined as •

Where A and

respectively.

d_U Vg gi aA j Ei+_A.j i.j

d_U=Vg _.i+,a.j ei+,&,j A_V_'_Ui,j

dnU=V, q i.j+a/_ Ei.j+'& _Ui.j

dnU=Vn _'i.j+ tA Ei,j+tA i.j

V are the standard forward and backward finite

(3.30)

differences,

t_k_U-- U i+ l.j -Ui,j

AvlU=Ui,j+I-Ui,j

VgU = U i,j - U i- l.j

V,qU = U i. j -Ui.j-1

(3.31)

_i' + vl. j and _i, j + _A are local variable scaling factors averaged to the cell face
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In theoriginal model,

_, i + _&, j "- "_" i+l,j+_i,j

_i,j+IA----'_" i,j+l +_i,j

(3.32)

where At*

AV

_i, j = _t" (3.33)

is the inviscid time step due to a unit CFL number, or,

_-i, j = (X_)i, j + (kn)i, j (3.34)

where _ and k n are the maximum local wave-speeds in the _ and 11 directions

defined in E,q. (3.21). The adaptive coefficients, e (2) and e (4) con_'ol the blending

of the 2nd and 4th differences in the dissipative operator •

c2_ K<2_ [v 1£i+aA.j = max i-l,j,Vi,j,Vi+l,j

_ i+tA.j =max 0, --E i+lA, j

c2_ K<_ IvE i,j+tA = max i,j-I ,Vi,j,Vi,j+l

E i,j+_A = max 0, - I_ i,j+_A

(3.35)

Where v is the norm of the centered 2rid difference of pressure used to locate large

pressure gradients and turn on the second difference dissipation.
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(Vi, j)_"

(Vi,j)_ -

Pi+l.j - 2P i,j + P i- l.j

Pi+l,j +2Pi,j +Pi- l.j

Pi,j+l - 2Pi,j + Pi,j- 1

Pi,j+l +2Pi,j+Pi,j-1

(3.36)

(4)
When the second differences are strong, the fourth differences are turned off by ¢ to

sharply resolve shocks. K c_ and Kc'_ are user specified constants which typically hold

values of:

KC_ 1 to 1
4 2

K(,)_ 1 to 1
256 50

The values that are used are based on the best convergence rate that may be obtained

(highest possible K c'>) while still maintaining accurate solutions, and on the ability to

cleanly capture shocks without too much smearing (K <2>).

The difference operators in Eq. (3.19) are applied in two steps. A sweep is made

through the domain in the _ direction, taking centered first differences of U at each

cell face for d 2 , and 3rd differences at each face for d 4 . Then another sweep is made,

taking centered differences of the 1st and 3rd differences, yielding the desired 2nd and

4th differences, respectively, at cell centers. The same procedure is repeated in the rl

direction.

3.3.1 Modilicatlons

Based on an analysis of Eq. (3.25), Swanson and Turkel [221 determined that the 4th

difference operator produces dispersion as well as the required dissipation. If the 4th
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differencesare applied, as a sequence of two 2nd differences instead of a I st and a 3rd

difference, the operator d4 will produce only dissipative terms.

D_ U = V_ i.j £ i,j V_ _ U i.j (3.37)

DnU= Vnz_ i,j ei0j Vrl_Ui,j

Note that e C4) and k are now evaluated at the cell centers, not at the faces.

The second area of modification is in the evaluation of the variable scaling factor,

_.. In viscous calculations, severe mesh stretching can result from the need to resolve

the boundary layer. Cell aspect ratios may vary from AI/Am _1 near a solid:

boundary, to 1 in the far-field. This large variation slows convergence, and diminishes

the accuracy of steady state solutions. Also, these problems increase in magnitude for

multigrid calculations due to the large difference of the high-frequency modes in the

two coordinate directions. [22]

To overcome these difficulties, a new _. based on cell aspect ratio was introduced

by Martinelli [z31 It is essentially a combination of the scaling factor in the original

model with an anisotropic scaling factor suggested by some researchers. [131[_] In the

di  on,

(  i.j = 1+
(3.38)

And in the rl direction,
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(ki.j)rl = _ 1+_--
(3.39)

0 < tx "; 1 (3.40)

If a is 1, then k reduces to the scaling in the original dissipation model given in Eq.

(3.30). If ct is 0, _. reduces to scaling in one direction only at each given face. This

scaling is not recommended as it may decrease convergence rates and create problems

for multigrid applications [221. A value of ct that has produced good results [2211181is

For the cases in the present work,

significantly with changing (x.

ix=2/3

solution convergence did not seem to change

In the present cell-centered scheme, image cells are included around the physical

domain to allow the same algorithm to be used for all interior cells. In order to

determine the 4th difference dissipation terms in cells adjacent to boundaries as in

Figure 3.4, 2nd differences must be given at the image cells.

(VAVAU)2 = (VAU)3 - 2(VAU) 2 + (VAU)I

Where V and A are the difference operators given in Eq. (3.27), and where •

(3.41)

(VAU)I = U 2 - 2UI + UO (3.42)
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0
÷

Figure 3.4. Cell Notation for Boundary Dissipative Flux

Since these differences can not actually be calculated ( U0 is not defined) they must be

assigned in a manner that maintains conservation form and doesn't introduce instability

at the boundaries.

Swanson and Turkel [221 provide a detailed analysis of various treatments of these

terms near boundaries. For far-field boundaries, the standard approach is to set the 2nd

differences in the image cells to zero.

(VAU)l = 0 (3.43)

A typical treatment at solid boundaries is to set the surface dissipative flux to zero

(VAU)I = (VAU)2 (3.44)

and then either •

1) (VAU)2 =0

or

2) (VAVAU)3 = 0

(VAU)3 = (VAU)2 = 0

(3.45)

Option 2 results in zero dissipation normal to the boundary for the first two interior

cells, 2 and 3.
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In the presentwork, both methodswere used with equal success,and without

noticeabledifferencesin theresults.
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CHAPTER 4 - BOUNDARY CONDITIONS

4.1 Inflow/Outflow Boundaries

For the channel flow cases, where the outflow conditions are essentially freestream,

a characteristic formulation of the boundary conditions is used. For the turbine cascade

case, in order to explicitly satisfy constant total temperature, total pressure, and flow

angle, a Riemann Invariant formulation is used at the upstream boundary, while a

characteristic formulation is retained at the outflow boundary.

4.1.1 Characteristic Formulation

This approach utilizes a transformed system of equations in which the boundary

cells are updated by specified and extrapolated characteristic variables. Rewriting the

Euler equations in a local coordinate frame that is normal and tangential to the

boundary gives :

0U OF 0G

O--t- + .-_-n + --_-s - 0 (4.1)

Where n and s denote the normal and tangential directions. At these boundaries, it is

assumed that variations of the flow conditions in the tangential direction are negligible,

and so Eq. (4.1) can be written as :
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OU OF

0-'-_+ _ = 0 (4.2)

The above one-dimensional system of coupled differential equations can be linearized

and transformed to an uncoupled linear system of partial differential equations:

OW OW

+

where W is the vector of characteristic variables, and

(4.3)

_. is the diagonal matrix of

eigenvalues. Denoting qn and qs as the normal and tangential velocities at the

boundary, where the normal is pointing into the solution domain, _. and W are defined

as"

{_ 0 0 0]

k= 0qn 0 0
0 qn+a 0
0 0 qn-a

W_-

..2
p - p/a

qs

(1/"_")( qn + P/P a ) (4.4)

1/NI_')( "qn + P/P a )

The barred terms represent variables evaluated at the linearized state, which in this

work are taken as the values from the previous Runge-Kutta stage.

Along the characteristics defined by slope dt/dn = I/),.i, Wi is constant and Eq.

(4.3) reduces to an ordinary differential equation. If the slope of the characteristic,

l/ki, is such that it originates from outside the computational domain, W i must be

specified. If the characteristic originates from within the computational domain, the

value of W i at the boundary for the new time level, t + At is found by tracing the

characteristic back to its intersection point with the previous time level, t. Evaluating

Wi at this intersection point will give the new value of Wi since Wi is constant along
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these characteristic lines defined by dt/dn= 1/ki. However, in steady-state

computations,it is commonpracticeto approximatethe valueof Wi which lies along

thecharacteristicby the value contained in the first interior cell (Figure 4.1).

t+At

Approximate
Exact -'-_\"_ _ n

Figure 4.1. Approximation To W i For The Characteristics Originating Within The
Domain

The boundary conditions are enforced at the boundary, or cell face, instead of the image

cell (Figure 4.2) to accommodate a consistent formulation of the boundary forcing

terms that will be given later in Chapter 6. The conservation variable in the image cells

are then updated by linear extrapolation from the interior as:

UI = 2Ub - U2 (4.5)

I+ I b +2

Figure4.2. Boundary CellNotation

For subsonic inflow, and an inward pointing normal, n, _-1, _,2, and _-3 are
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positive,meaningthecharacteristicsoriginate from outside the domain (see Figure 4.3).

Therefore, Wl, W2, and W3 must be specified, and W4 must be extrapolated from

the interior. The following equations result:

Pb P.-
- "Zr" = P-- - -2r" (4.6)

a a

q_ = qs.

Pb P..

q_+m=ch +--
pa pa

Pb Pex
-qnb + _ =-Cln,, +___

pa pa

where the subscripts b, **, and ex refer to the boundary, freestream, and extrapolated

values, respectively. Solving Eq. (4.6) for the primative variables at the boundary

gives:

qs_ = qs.

I --_

Pb = _[ Pex + P**+ P a (

Pb = P** + ( Pb - P,* )/a-'2

qnb = qn. + ( P**- Pb )/P a

(4.7)

For subsonic outflow, with an inward pointing normal, n, only _.3 is positive

(Figure 4.3), and so W 3 is the only characteristic variable that must be specified.

Following the same procedure as above, the updated values are given by •
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qs b _ qs_

1
Pb= y[ pou_+ pox+ Pa( q_

_2
Pb = Pex + ( Pb -- Pex )! a

qn_= qn_ + ( Pb- P_x)/P a

(4.8)

where the subscript out refers to the exit conditions.

For the inviscid channel flow cases, Pout and q_, are assumed to be at freestream

conditions. For viscous problems, where the boundary layer (or viscous wake)

intersects the outflow boundary, the characteristic relations are incorrect due to the

non-isentropic conditions existing there. For these cases, the exit pressure is specified

and the other variable are extrapolated.

For supersonic inflow, all four _-i are positive (Figure 4.3), and therefore all four

W i must be specified, which reduces to specifying the primative variables:

qSb -- qs.

Pb =P**

pb=p_

qn_ = q_

(4.9)

For supersonic outflow (Figure 4.3), all Li are negative, and so all Wi must be

extrapolated:

qsb "- qex

Pb ----Pex

Pb = Pex

q_ =q_.

(4.10)
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t

Subsomc Inflo_

n

Subsonic Outflow

__+a

t

tl.
n n

Supersonic Outflow

Figure 4.3. Characteristics At Far-Field Boundaries

4.1.2 Riemann lnvariant Formulation

In this formulation, an upstream-running Riemann invariant is used in conjunction

with specified total pressure, total temperature, and flow angle to solve for the updated

inlet conditions. [251 The Riemann invariant, R-, is based on total velocity, Q, and is

approximated by extrapolation from the first interior cell •

2a_x
R- = Qex (4. I I )

7-1

Where a is the local speed of sound

a = (4.12)

Computing R- in this fashion represents extrapolation along streamlines versus normal

to the boundary. Based on isentropic relations and the specified total temperature at the
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inlet, To=, the inlet speedof soundcanalsobegivenby •

[ab = (Y- 1 )CpTo= -Q_( - ) (4.13)

Where Cp is the non-dimensional specific heat

1 (4.14)
Cp= M_(7-1)

and Qb is the unknown inlet total velocity. Using Eq. (4.12) and Eq. (4.14), a

quadratic in Qb results. Being an inflow boundary, the negative root is non-physical,

and therefore Qb is given by the positive root:

(y-l)R-+ [4('y+l)CpTo=-2(y-1)(R-)2]

Qb = y+ 1 (4.15)

Pressure and density at the inlet are then calculated using isentropic relations and the

specified inlet total pressure •

Pb = Po= t+ ('t- l) [ Qb2 ab

2 -y/(y- 1)

(4.16)

The cartesian velocity components are then given by Qb and the specified inlet flow

angle, [31 •
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u = Qbcosl_t (4.17)
v = Q_,sinl]l

At theoutflow, thecharacteristicformulation(section4.1.1) is usedwith aspecified

exit pressure.Theexit pressurein the turbinecaseis basedon a givenexit isentropic

machnumber Moat,,, assumingthat Po_= Po. :

] -7/( "t- 1)
Pout=po- 1+ (Y-l)2 M°utw 2 (4.18)

4.2 Solid Wall Boundaries

For a solid wall in viscous flow, the physical boundary conditions required to close

system of governing equations are zero velocity and either specified surfacethe

temperature or heat flux:

Q=0

T = Twall or /)----if-=
wall

(4.19)

where Q is the total velocity and n is the normal to the surface. The physical boundary

conditions required for inviscid flow is flow tangency at the surface (zero flux through

the surface):

Q'_= 0 (4.20)

For a numerical scheme, however, other boundary conditions are required to close the

discrete equations, and these must be specified in a manner consistent with the physics

that are occurring at the boundaries. The implementation of these numerical boundary

conditions at a solid wall is given below for inviscid and viscous surfaces.
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For a cell-centered,finite volumescheme,theonly contribution to the momentum

equationsat asolid wall is thepressure.Thepressuremaybeobtainedby extrapolation

from the interiorbasedon thepressurederivativenormalto theboundaryiSl:

_n

( x_xrl + Y_Y,q )-_'_ + P( YTIu - x_v )( x_v - y_u )
O__EP 2 2 (4.21)

(x_+y_)

giving

_P (4.22)
Pb = P2

Where the subscript b denotes the boundary point and the subscript 2 denotes the first

interior cell as before (Figure 4.2). For inviscid flow, flow tangency is specified by

setting

where qn and qs are the normal and tangential velocity components.

(4.23)

Density is

obtained by isentropic relations based on the assumption that the entropy gradient

normal to the boundary is zero:

9u = 92 _ (4.24)

For the viscous cases, the normal pressure derivative at the boundary is assumed to be

zero in the present work. A no-slip condition is specified for the velocity :
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(4.25)

andaspecifiedwall temperature,T8, is usedto definethedensity:

YM2**I_
Pb-

Tb
(4.26)

For the flat plate problem, an adiabatic surface is specified:

c3T I = _ Tb = T2 (4.27)
0

b

For the viscous bump and turbine problems, the temperature at the boundary is set equal

to the freestream total temperature:

Tb = To. (4.28)
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CHAPTER 5 - CONVERGENCE ACCELERATION

5.1 Multigrid Method

Multigrid was developed by Brandt [101[111 to increase convergence rates for the

solution of steady, elliptic-type problems, and was later applied to the Euler equations

by Jameson. t61 Jameson used Multigrid directly with his hybrid Runge-Kutta schemes

on all mesh levels, solving the same fine-mesh equations with the addition of forcing

terms to maintain fine-mesh accuracy. In this chapter, a brief discussion of Brandt's

FAS scheme for steady problems will be given. Then his notation will be used to

describe Jameson's procedure for applying Multigrid to the time-dependent Euler

equations.

A general, non-linear steady equation is given in Brandt's notation as :

Lh Uh = Fr_ (5.1)

where h denotes relative mesh spacing, L is the discrete spatial operator, and F is a

forcing term which is usually zero on the finest mesh level. The corresponding

coarse-grid equation is:

L2hU2h = F2h

where the forcing term is based on the transferred fine-mesh residual (F h - LhUh):

(5.2)
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F2. = I_ ( Fh - LhUh ) + I._ ( I_Uh ) (5.3)

I_ is the fine-to-coarse transfer operator (interpolation scheme). Changes in the

solution are transferred back to the fine mesh to update the solution •

U_. = U_, + I_ AU2h (5.4)

where

AU2h = U2h - I2hUh,ad (5.5)

and where I_ is the coarse-to-fine transfer operator. This transfer introduces high

frequency errors into the solution on the fine grid, and therefore, it is important that the

relaxation scheme (or time-stepping algorithm for unsteady equations) possess good

high- frequency damping characteristics. [131

For the unsteady Navier-Stokes equations

Jameson's Multigrid equations are of the form:

using Runge-Kutta time-stepping,

CO _ . (k-l)

U_ U2h aAt( F2h= - t-2hUZh - )

where the coarse-mesh forcing term is •

(5.6)

(()

F2h = I_ (Fh - LhUh )+ L2h ([2hu_) )

with Fh = 0. The quantities in parentheses refer to the stage of the Runge-Kutta

scheme, and L represents the discrete spatial operator given in Eq. (3.1 1) •

1
L2hU2h = -_--Q-[ C(U2h) + V(U2h)- D(U2h)] (5.7)

The forcing term, formulated in the above fashion, is necessary in order that the fine-
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mesh solution will not be affected by the coarse-mesh truncation error. If the fine mesh

converges (Fh-LhUh =0), the coarse mesh converges also. Looking at the 1st

Runge-Kutta stage on the coarse mesh:

U(1) (0) (o}

2h = U2h - OUSt( L2hU2h - F2h ) (5.8)
(0) fO) (a)

= UT.h - O_t[ L2hU2h - I_ ( F h - LhU h ) - L2h([2hhUh') ]

(0) • r(4)
=U_-a.At[ -I_(Fh-LhUh )]

_ (o)

=U2h

Or, in other words, 0U/0t = 0 on the coarse mesh.

For Jameson's cell-centered scheme, the transfer operator 12h is a volume

weighted average over the 4 fine-mesh cells that make up a given coarse-mesh cell

(Figure 5.1).

3 2
+ +

7 ",,
+ +

4 1

Figure 5.1. Fine-to-coarse Transfer

The transfer of the solution and the residual from the fine mesh are therefore given as:
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Solution transfer:

4

Uh_AV,,

I2 h Uh .- i=t 4

AVh,
ill

(5.9)

Residual transfer:

I_[ Fh - LhUh l =
' 1-1 1AVi -_i [ C(Uh) + V(U h) - D(Vh) ]

t=l

4

Fluxi
t=l

4

ZaV_
tffi I

4

Z av_
i=l

= Y'. Residuali
i=l

(5.10)

This residual transfer approximates the integral equations on the coarse mesh cell

(2A_Arl) with fine mesh accuracy, and maintains their conservative property.

Bi-linear interpolation is used to transfer the coarse mesh solution changes back to

the fine mesh (Figure 5.2) '

9 3 _6AUi,j =_AUI + _ [AU 2+AU4 ]+ AU3 (5.11)

9 3 _6AUi÷l.j =_AU2+_[AU1 +AU3 ]+ AU4

9 3 _6AUi, j+ l= T6 AU4 + T6" [AUl + AU3 ]+ Au2

9 _ _6AUi + 1 . j + 1 = T6 AU3+ [ AU4 + AU2 ] + AU 1
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Where the subscripts i ,j denote the indices for the fine-mesh cells and 1-4 denote the

coarse-mesh cells, and where AU is the coarse-mesh solution change given in Eq. (5.5).

4m 3
id+l i+Id+l
_- -4-

& i.j i+lj
1 2

Figure 5.2. Coarse-to-fine Transfer

The cycling process employed in this work is referred to as a simple Saw-Tooth

cycle (Figure 5.3). One Runge-Kutta integration is performed on each mesh level until

the coarsest mesh is reached, and then the solution changes are transferred back to the

finest mesh without any integration steps being performed on the way down. This may

not be the optimum cycling strategy, but it has been found to be computationally

efficient for a number of flow calculations. [61031 [71{261



Grid Level

I

4 )

® Runge.Kutta integration

Fine-to-coarse transfer (Ih2h)

Coarse-to-fine transfer (I_)

Figure 5.3. Saw-Tooth Multigrid Procedure

5.2 Implicit Residual Smoothing

The concept of implicit residual smoothing for Runge-Kutta schemes was

introduced by Jameson [6] to permit the use of larger time steps and therefore increase

steady-state convergence rates. The residuals at each point, Ri.j, are replaced by

smoothed residuals, Ri.j by implicitly solving the equation:

Ri. j = Ri. j + e_ (VgAg)Ri. j + e, (VnAB)Ri ' j (5.12)

where V and A are the first forward and first backward differences, respectively, that

were defined in Chapter 3, and ¢_ and e are smoothing coefficients in each coordinate

direction. This could be thought of as solving the partial differential equation:
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,I  RI,[ 2R1- +-aT

which is similar in form to the 2-D Heat Equation, and possesses the same properties.

This equation (F__,q.5.13) therefore has the effect of smoothing the residual at each point

based on all the residuals in the entire domain. The global influence on each residual is

determined by e, a "diffusivity" term. Discretized implicitly, Eq. (5.13) is the same as

Eq. (5.12). Rearranging Eq. (5.12) gives:

(l-e V_A_ -e 7nA, q)Ri, i=Ri,j (5.14)

of which a factored approximation is :

( l-e_V_,5_ )( l-e VnA n )Ri.j =Ri.j (5.15)

In the present work, Eq. (5.15) is applied as a combination of one-dimensional

smoothing steps :

( 1 -e_V_A_ )R_.j = Ri,j (5.16)

(1- en VT1Ar1 )Ri.j =R_.j

Where R* are the intermediate smoothed residuals after the sweep in the _ direction.

Neglecting the effect of artificial dissipation, Jameson [6] showed that stability can

be maintained for any CFL number so long as e satisfies the requirement :

E_" L[ (CFL)2 l] (5.17)- 4 (CFL')2

where CFL* is the stability limit for the unsmoothed scheme. However, using CFL
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numbersthat are too large may severely decrease high frequency error damping and

reduce convergence rates. [_] Also, with non-linear equations containing artificial

dissipation, other factors may enter in and create instabilities. Jameson [61 suggests that

optimum convergence rates are usually obtained for

CFL = 3(CFL') (5.18)

For even-stage hybrid Runge-Kutta schemes,

smoothing is applied during every even-numbered

scheme, itisappliedduringodd-numbered stages.

Locally varying _ and

highly stretchedmeshes.[Is][191

stability is maintained when the

stage, while for an odd-stage

may be used at each point to optimize the smoothing for

However, in this work, good results were obtained by

using constant coefficient values of" _ = e = 2.0
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CHAPTER 6 - MULTIGRID BOUNDARY CONDITION FORMULATION

In Multigrid applications, a topic that has received little attention is the effect of the

coarse-mesh boundary conditions and boundary transfer operators on the accuracy and

convergence of the solution. In fact, the procedure for dealing with these issues is

rarely mentioned, and if so, not in a very detailed fashion. Merely enforcing the fine-

mesh boundary conditions on the coarse mesh levels will introduce coarse-mesh

truncation error into the fine-mesh solution. Therefore, a consistent formulation is

required for the boundary conditions just as it is for the interior Multigrid equations.

In this section a new way of viewing the Multigrid acceleration process will be

introduced in order to derive a general approach to obtaining the coarse-mesh Multigrid

equations. This, in turn, will lead to a consistent formulation of the coarse-mesh

boundary conditions. Rather than formulating the Multigrid acceleration scheme

directly from the discrete problem, the governing partial differential equations used in

the Multigrid acceleration scheme will first be constructed. This is accomplished by

introducing a filter operator which is applied one or more times to the original system

of partial differential equations. The resulting series of filtered partial differential

equations may then be discretized leading to a consistent series of coarse mesh

equations to be solved in the Multigrid acceleration scheme. This approach is

motivated by the observation that both the coarse mesh solutions and the coarse mesh
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discrete equations solved in a Multigrid accelerationschemeare in fact filtered

approximations to the correspondingfine mesh solution and discrete equations,

althoughtheyarerarely viewedin thismanner. Theadvantageof thepresentapproach

is that the filtering processis clearly definedthroughthechoiceof the filter operator.

Further, since in the presentformulation a generalfilter is initially assumed,a wide

classof different multigrid discreteformulationsarepossibleby simply changingthe

actual filter that is used. Finally, through a clear definition of the filtering process

between mesh levels, the proper formulation of the corresponding coarse mesh

boundaryconditionsfollowsdirectly.

In thediscussionwhich follows the filteredform of thegoverningequationswill be

derivedthroughtheintroductionof ageneralfilter operator. It will thenbeshownthat

with onepossiblechoiceof this filter thecorrespondingdiscreteequationsreduceto the

FAS Multi-grid schemeproposedby Jameson.Theremainderof this chapterwill then

center on the proper formulation of Multigrid boundary conditions, with special

attentiondirectedtowardboundaryconditionsfor Jameson'sMulti-grid scheme.

6.1 Filtered Partial Differential Equations

The Euler and Navier-Stokes equations may be written in the following general

form for a non-orthogonal coordinate system:

+ -_-_ + --_-- = S (6.1)

Where F and G represent the combined convective and viscous terms, and where S is a
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sourceterm,which is zero for theunfilteredequations.

operatordefinedasfollows:

Considerageneralspatialfilter

1 (6.2)

where•

and"

H(_,rl) = 1 insidethedomain
= 0 outside the domain

W(_,rl) - Weighting Function

(6.3)

_.(_,q) = H(_,_) W(_-_,_-q) d_'d'q (6.4)

Apply this filter to Eq. (6.1),

L g(T)+ _ +_-
(6.5)

The first term may be integrated as:
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L (J'-'U) =-_- (J-1U) H(_,_) W(_-_,_-_-rl) d_d_ (6.6)

1
X _t

[_i (J-I U) H(_' _) w(_-_'_-_-n) d_drl_

( LI -_ u)

The filtered form of Eq. (6.1) becomes •

8.__(j-IU)+L[G3F 8(_ ]9t + = L(s) (6.7)

The goal is now to formulate a discrete approximation to this equation which will be

solved on the first coarse mesh level. Unfortunately, the present equation gives a time-

dependent equation for J-1U and not the filtered solution U. It is important to note

that in general J-lU # J-! U . Therefore, we will now define the following "average"

solution, 0"

U- J-Iu

j-1
(6.8)

In terms of 0 eq. (6.7) may be written as:

_..__( j--"i"1_ ) = L [ S 31_ 3(3],gt o3_ c3rl (6.9)

In order to put Eq. (6.9) into the same form as the original equation, Eq. (6.1), we define

filtered approximations to F_ and G_ as follows:
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g:_ = f:(l[l)_ 6 n = 6(1_I) n (6.10)

Then adding these filtered spatial derivatives to each side of Eq. (6.9), the filtered

equation takes on the same form as the original governing equations (Eq. (6.1)):

where

O..._.(j--'i_ )+ 0F: /_ -S (6.11)
ot

Note that the source term which appears in the filtered equation can not be simplified

any further since:

L

L

] of:(t3)
c)F:(U) _:_ (6.12)

I ]i_;(u) , i_GfU)
On

because F: and 13 are non-linear functions of U and the metrics of the coordinate

transformation, and l_I_ U.

If we define a discrete approximation to the filter operator (i.e., the fine to coarse

mesh transfer operator in Multi-grid terminology), Eq. (6.11) is the differential equation

which corresponds to the coarse mesh discrete equation solved in Multigrid

acceleration schemes To illustrate this point consider the following discrete filter

operator. Assume a uniform mesh in computational space with A_ = Arl = I and a

weighting function, W, defined as having unit influence over the four fine-mesh cells
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surroundingagivenmeshpoint,andzeroinfluenceelsewhere(Figure6.1):

W(_-_,_-rl)= 1 if -I<_-_<1 and -l<_-rl<l

= 0 if I_-_1 > 1 or I_-rll > 1

(6.13)

I

Tl-rl

-1

+1

4 3
+ +

1+ +2

-1

+1

Figure 6.1. Weighting Function Description

The corresponding "average" solution, U, is defined as:

_ j-1U _ L(J -1U)

j-"-i" L(J -1 )
(6.14)

Inside the domain (H = 1), with W as defined above:

1 1

1
J-I U=L(J-1U)=_. f f j-lUd_dT I

-1 -I

1 _ AViU i
_- i=l

1 1 1 1

-- 1 1

-1 -1 -1 -1

(6.15)

In the last step we have used the mean-value theorem with Ui being the cell centered
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valueof the solution on the fine mesh. In a similar fashion •

1 1

J-t =L(J-1) = _ I _
-1 -1

and 0 is therefore given as:

1 4

(j-I d_d'q)= _- X AVi
i--1

(6.16)

4

5". AViUi

0_ i=l = ih2h4 ----U2h Uh

X zxv 
i=l

(6.17)

The "average" solution l_I is exactly the same as the transferred solution, U 2h, used in

Jameson's FAS Multi-grid formulation (see Eq. (5.9)). Similarly:

l 4

, Z(Flux)i
AVi '='

i=l

- 12h (Fh - LhUh)

Which is the same as the transferred fine mesh residual as defined by Jameson (see Eq.

(5.10)).

In summary, Eq. (6.11) is the differential counterpart to the discrete coarse mesh

equations used in Multi-grid acceleration schemes. Expressed in this form, there is a

direct relationship between the filter operator and the resulting filtered governing

equations. While the present discussion details a single application of the filtering

process, if the process is repeated, filtering over increasing length scales, higher and
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higherlevelsof thefilteredequationcanbe formulated. Further,eachlevelcanbecast

in the sameform as that of eq. (6.11). From eachnew level of filtered equationthe

correspondingdiscretecoarsemesh Multigrid equationcanbe determined.Basedon

this generalderivation,it is clearthat Jameson'sMulti-grid accelerationschemeis one

of a large numberof Multi-grid formulationswhich can be constructedfrom these

equations.

6.2 Coarse-Grid Boundary Conditions

The boundary conditions on the coarse mesh levels are applied at the cell faces, in

the same manner as the fine-mesh boundary conditions, with the addition of forcing

terms to allow them to be solved with fine-mesh accuracy. These boundary forcing

terms will be derived in a similar fashion to the interior forcing terms, using the above

general Multigrid approach to determine the correct way to transfer the boundary values

to the coarse-meshes.

At a boundary, as in Figure 6.2, the function H is zero for the image cells and 1 for

the interior cells. The weighting function, W, is the same function as for the interior,

given in Eq. (6.12).
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Figure 6.2. Coarse-Mesh Boundary Transfer Notation

Applying the filter, L, to the fine-mesh cells adjacent to the boundary, and integrating

as before, the transferred boundary value on the coarse mesh, Ub, is defined as:

2

]_ AViUi
_j i=l

b = 2

Z
t**l

(6.19)

The coarse-mesh boundary conditions are now formulated in terms of the transferred

solution using the same discrete Multigrid equations as for the interior points:

L2hl]b = F2h = I2h(Fh -- LhUh) + L2h(I2hUh) (6.20)

Since the boundary conditions on each level are satisfied exactly,

l_(Fh - LhUh) is always zero, and therefore, the forcing term is •

the quantity,

F2h_ = L2h ( I2hUh ) (6.21)

which is a function of the transferred boundary value, lit,, and the transferred interior

solution at point 2c (Figure 6.2). As an example, take the inviscid flow tangency
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condition:

q_,= qsu ; qn_" 0 (6.22)

For the tangentialvelocity, qsb,the boundarycondition on the fine meshin Multigrid

notationis:

where

For thecoarsemeshlevels:

where

LhUh= Fh (6.23)

LhUh = qsb - qs2,

F h =0

L2hU2h = F2h (6.24)

(k) (k)

l-,2hU2h = ( q_, - qs,. )2h

(0) t0)

F2h =qsb -q_

and where

representing the initially transferred quantities.

Runge-Kutta stage is therefore given as:

fk) (It) [0)

qsl, =qs,. +[qs,,

the quantities in parentheses denote the Runge-Kutta stage, with zero

The updated boundary value at each

(0)

- qs,. l (6.25)

The conservation variables in the image cells are then updated by linear extrapolation

from the interior based on the updated value of Ub"

IJtc = 20b - 02c (6.26)

For the Navier-Stokes equations, the forcing term at a solid wall essentially adds a
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partial slip condition as the meshbecomestoo coarseto fully resolvethe boundary

layer. In the limit, asthemeshbecomesvery coarse,this is equivalentto applyingthe

full inviscid slip condition at the wall.
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CHAPTER 7 . RESULTS

The numerical algorithm described in the previous sections has been applied to a

variety of both inviscid and viscous 2-D flow computations in order to determine the

effect of the Multigrid boundary conditions on convergence. Solutions in each case are

given to validate the accuracy of the present code, and then convergence histories for

applications with and without the coarse-mesh boundary forcing terms are shown. It is

stressed here that all Multigrid and single-grid solutions were the same. References to

forcing terms refer to those implemented in the boundary cells (Chapter 6) and should

not be confused with the forcing terms for the interior points given in chapter 5. The

number of grids specified refers to the number of mesh levels used in the Multigrid

calculation, with 1 being the finest mesh.

Convergence is measured in terms of the average residuals of the conservation

variables which have been normalized at each point by the local time-step. One

Multigrid Cycle is defined as a complete sequencing through all mesh levels to the

coarsest mesh and then back to the finest mesh again. For single-grid solutions, this is

the same as one time-step, or one iteration.

Computations were performed on a Gould NP-1 mainframe computer, and on an

Ardent Titan graphics workstation. CPU times on the Titan with a vectorized code

were equivalent to those on the NP-1 with an unvectorized version. All CPU times are
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givenin minutes.

7.1 Inviseid Channel Flow

Initial code validation was performed for subsonic, transonic, and supersonic flow

in a channel with a circular-arc bump on the lower wall. This is a fairly common

problem, used in other works as an initial validation tool. 021[t311151[271 A 129x33

algebraically stretched mesh is used for all 3 cases with minimum increments :

Ax=Ay=.015625. The subsonic and transonic cases use a 10% bump, and the

supersonic case uses a 4% bump, both of which are shown in Figure 7.1. The channel

is 3 chords long and 1 chord high.

7.1.1 Subsonic Case

Figure 7.2 shows the solutions obtained for the M** = .5 case. The spikes in the

total pressure loss at the leading and trailing edge (Figure 7.2b) are due to the artificial

dissipation in the numerical scheme activated by the stagnation point pressure

gradients, and to the discontinuity in the grid metrics there. The trailing edge pressure

loss is convected downstream and slightly affects the symmetry of the solution.

Figure 7.3 presents the convergence histories for the subsonic case with and without

forcing terms for 3, 4, and 5 grid levels. From these plots, it can be seen that the fine-

grid convergence level of a Multigrid calculation is affected by errors introduced as a

result of the incorrect formulation of the boundary conditions on the coarse levels. Note

that with forcing terms applied, all 3 solutions reach the same convergence level as the

fine-mesh. As the number of grid-levels increases, the coarse-mesh truncation error
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grows (without boundary forcing terms) due to the increasing mesh coarseness. This is

summarized in Figure 7.4 for the 3,4, and 5 level solutions without forcing terms. The

forcing terms therefore permit any number of grids to be used (as permitted by the

initial mesh resolution of the finest level) while still maintaining fine-mesh accuracy.

Figure 7.5 shows the efficiency gains realized in the Multigrid calculations for

various numbers of grids. The single-grid convergence rate is shown and compared to

2,3,4, and 5-grid rates for Multigrid cycles, and CPU time. CPU time is important in

Multigrid calculations, since no actual saving are realized by Multigrid acceleration if

the number of cycles required for convergence, though fewer, take longer to perform.

Note that the 3,4, and 5 grid solutions use the same amount of CPU rime to reach a

converged solution. This shows that the additional work required above 2 levels is

negligible for the present Multigrid algorithm, illustrating its efficiency.

7.1.2 Transonic Case

Figure 7.6 shows the solutions for the supercritical, M,. = .675 case. A small region

of locally supersonic flow develops over the bump, with a shock occurring over 3 grid

points at approximately 70% of the chord. The Mach number upstream of the shock is

1.44, and 5% total pressure loss is generated and convected downstream along

streamlines. For a normal shock of 1.44, shock tables give a total pressure loss of

5.24%, which agrees very well with the calculated loss.

Figure 7.7 shows the convergence histories of the transonic case for solutions with

and without boundary forcing terms. The same trends exist here as were realized for

the subsonic case, with the untreated boundary conditions on the coarse-levels
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introducingcoarse-meshtruncationerror into thefine-meshsolution.

Figure 7.8 showsthe differencebetweenthe single grid and 5-grid convergence

ratescomparedto bothMultigrid cyclesandCPUtime.The gainsrealizedby Multigrid

aresomewhatlessthanfor the subsoniccase,but thiscanbeattributedto the increased

convergencerateof thesingle-gridsolution.

7.1.3 Supersonic Case

Figure 7.9 presents the results for the M.. = 1.4 channel flow case. Oblique shocks

form at both the leading and trailing edge and expand as they propagate downstream

and towards the upper boundary. The leading edge shock angle is such that a standing

normal shock exists at the upper boundary where the leading edge shock impinges. The

trailing edge shock is somewhat thicker due to the effect of the expansion waves

generated over the bump. As the leading edge shock is reflected from the upper wall, it

is weakened as it passes through the trailing edge shock and then intersects the lower

wall before being weakly reflected.

Figure 7.10 shows the single grid convergence rates for the supersonic case

compared to the 5-grid computations. Applying or not applying the boundary forcing

terms made no difference in this case. The single grid solution converges very quickly,

while the Multigrid solution is somewhat slower than in the previous cases, resulting in

a large decrease in the overall Multigrid efficiency. This is due to the increased flow

speed.

As the overall speed of a flow increases, single-grid convergence rates tend to
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increase,and Multigrid efficiency drops. This can beshownby a comparisonof the

convergencerates,with andwithout Multigrid acceleration,of theabove3cases,shown

in Figure 7.11. The convergenceratesof thesingle-gridsolutionsincreasewith Mach

number, while the Multigrid convergencerates remain approximately the same.

Therefore,theMultigrid efficiencygainsarelimited by thefine-mesh.

7.2 Viscous Fiat Plate

As a first step in validating the present code for the solution of the full Navier-

Stokes equations, laminar viscous flow was computed over a fiat plate. A 65x33

algebraically stretched mesh was used for these computations, shown in Figure 7.12,

with minimum increments of Axmi n = .01 and Aymin = .0025. The leading edge of the

plate begins one unit in from the inlet boundary and extends the length of the domain.

Flow tangency is enforced along the lower wall upstream of the plate. At the upper

wall, the normal velocity is extrapolated from the interior, and the pressure, tangential

velocity, and density are specified as having freestream values. The inflow boundary

conditions are the same as those used in the inviscid channel flow solutions. However,

due to the non-isenn'opic nature of the boundary layer that passes through the outflow

boundary, pressure is specified and the other variables are extrapolated from inside the

domain. For this calculation, the exit pressure is specified as freestream. A no slip

condition is enforced along the flat plate, with pressure and density obtained by

specified adiabatic conditions at the wall, ( c3T/_ )wall = 0, and zero pressure change

normal to the wall, ( _gP/c3rl )watl = 0.
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Figure 7.13 shows the solutions for M**=.5 and Reynolds Number:

-Rex)x_-i= 8000. Theskin friction coefficientandboundarylayerprofilesarecompared

to resultsobtainedfrom a 2-D compressibleboundarylayer calculationI281utilizing 99

pointsnormal to the wall. The velocity and temperaturearenormalizedby freestream

valuesand plotted versesthe boundarylayer parameter,_ = y/xR'_x, where Rex is

basedondistancefrom theleadingedgeof theplate.

Figure 7.14 presentsthe convergencehistories for this case with and without

boundaryforcing terms. As in the inviscid computations,the level of error becomes

higherasthe numberof grids increases.Note that with the forcing termsapplied,the

sameconvergencelevel is reachedfor both the 4 and 5 grid calculations. For this

viscous calculation, the error introduced by the coarse-meshboundary conditions

without forcing termsseemsto begreaterthanfor thepreviousinviscid cases.This can

beattributedto the presenceof theboundarylayer. As the grid levelsbecomecoarser,

boundarylayer resolutionis notpossibleandsotheno-slipboundaryconditionon these

levels is physically incorrect. Theforcing termsessentiallyadd a partial slip condition

asthe first meshline becomesfartherawayfrom the boundary,andin the limit of the

coarsestpossiblemesh,this is equivalentto specifyingflow tangencyalongthewall.

However,merely specifyingflow tangencyon the coarsemesh levels without the

forcing termsstill introduceserror into thefine-meshsolution,ascanbeseenin Figure

7.15a. When the forcing terms are utilized, all coarse-meshtruncation error is

effectively eliminated. In Figure 7.15b, this flow tangencycondition on the coarse

meshlevelswith forcing termsis comparedto theno-slip condition with forcing terms,
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and the flow tangency convergence is somewhat faster. This may may be due to an

over-rel_vcation at the boundaries resulting in increased steady-state convergence.

Figure 7.16 shows the gains in efficiency realized by Multigrid solutions for the flat

plate case. They are not as high as those obtained in the previous inviscid cases which

is typical for viscous solutions. The boundary forcing terms, although reducing the

error for the 5-grid solution, did not improve the convergence rate as was initially

hoped.

7.3 Viscous CircularArc Bump

Subsonic,laminar flow through a channel with a 5% circular-arcbump on the lower

wall iscomputed. [Is][27][20]A 65x33 mesh isused in these calculationsand isshown

in Figure 7.17. The minimum Ax and Ay arethe same as forthe flatplatemesh, and the

stretchingisappliedatboth the leadingand thetrailingedge.

Flow tangency isenforced both along the upper walland the lower wall upstream of

the leadingedge. A no-slipconditionisappliedover the bump and downstream of the

trailingedge. This case may alsobe referredto as a I0% bi-circulararc cascade with a

sting mounted at the trailingedge and extending downstream. [15] The normal

momentum equation (Eq. 4.20) is used to determine the pressure,and density is

obtained from the wall temperature, specifiedfor thiscase as the freestream total

temperature:Tw,_l= To. The inflowand outflow boundary conditionsare the same as

forthe flatplatecase.

Figure 7.18 gives the solutionsfor IV_ = .5 and a Reynolds Number (based on
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chord) of 8000. Boundary layer separation occurs at 81% of the chord, with the

separation bubble extending downstream to 120% chord, where the flow re-attaches.

Skin friction and static pressure results agree very well with those given by

Kallinderis. [291 The velocity profiles agree fairly well with those reported by Rhie. I271

However, a slightly thicker boundary layer is predicted by Rhie, possibly due to higher

levels of artificial dissipation, and the discrepancy increases with distance over the

bump. The separation bubble occurring at the trailing edge may be seen in the contour

plots and velocity vector plots.

Figure 7.19 shows the Multigrid results for this case with and without boundary

forcing terms for 3, 4, and 5 grids. The increase in error with number of grids is greater

than that for the fiat plate case, possibly due to more complex flow phenomena and the

additional stretching at the trailing edge.

Figure 7.20 summarizes the increased effect of the coarse-mesh truncation error

(without forcing terms) on the fine-mesh as the number of mesh levels increases. The

effect of applying flow tangency on the coarse grids for this viscous case is shown, with

and without forcing terms, in Figure 7.21a. The results are similar to the corresponding

flat plate case (Figure 7.15a), although there is no apparent increase in convergence rate

for the flow tangency condition with forcing terms (Figure 7.21b).

Figure 7.22 presents the efficiency of the Multigrid calculations compared to both

Multigrid cycles and CPU time with the single-grid convergence. The increase in

efficiency measured by CPU time is less than that for Multigrid cycles due to the

additional work required in calculating the viscous stresses.
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7.4 VKI Gas Turbine Rotor Blade

In the interest of applying the present algorithm to a more realistic problem, inviscid

and viscous calculations are performed here for a VKI gas turbine rotor blade. [3°] The

common geometric parameters for cascade calculations are defined in Figure 7.23, and

for this case are specified as:

g=.697 y=33.35 131=24"
C

Where g/c is the gap-to-chord ratio, y is the blade stagger angle, and 131 is the inlet flow

angle.

The present computations were performed for M 1 -. 19 and M2_. = 1.0, where M2w

is the specified outlet isentropic Mach number which sets the ratio of exit static pressure

to upstream total pressure (see Eq. 4.19) This ratio is .53 for the current value of M2_.

The flow is turned 96 degrees to a final steady-state outlet flow angle of approximately

72 degrees.

7.4.1 Inviseid Case

Figure 7.24 shows the 73x17 C-mesh used for the inviscid calculations. At the

inlet, Riemann lnvariant boundary conditions are used (see chapter 4) with specified

total pressure, total temperature, and flow angle. The outflow boundary conditions use

characteristic variables with a specified exit pressure. Periodicity is enforced along the

upper and lower boundaries, and flow tangency is enforced on the blade.

Figure 7.25 gives the inviscid results. All surface quantities are plotted along the

blade's coordinate system, not the axial distance. The local isentropic Mach number is
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givenas:

1A

Mi s -- 2 I 1 11( y - 1 ) (P/Po, )(Y- 1)/y
(7.1)

Comparisons are made with blade-to-blade H-mesh calculations performed by Arts [3°]

which used a corrected viscosity scheme, and with experimental results obtained by

VKI.

The flow is accelerated on the suction surface until a weak shock forms. The

present calculations have smeared this region, and have underpredicted the flow

expansion, possibly due to the coarseness of the mesh and the type of artificial

dissipation that is used. The leading edge pressure gradients are very high, activating

the 2rid order dissipative terms and creating large total pressure losses. Large total

pressure losses are also incurred at the trailing edge due to the wedge-type truncation

verses a smooth, blunt rounding of the trailing edge. In order to realize minimum total

pressure loss for inviscid cascade computations, it is essential that the normal

momentum equation, tangential momentum equation, and flow tangency all be satisfied

simultaneously at each point along the blade. Igl However, this method was not used in

the present work. The weak suction surface shock and supersonic bubble may be seen

in the Mach contours at about 50% chord.

Figure 7.26 shows the convergence histories for the inviscid case. Since the

coarse-mesh truncation error is quite low for only 3 levels, the boundary forcing terms

had no effect on the convergence levels for this case. Due to a large portion of high-
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speed flow, the single-grid convergence was quite rapid, and Multigrid therefore did not

produce large savings.

7.4.2 Viscous Case

Figure 7.27 shows the 129x41 C-mesh that is used in the viscous computations.

Results for laminar flow at a Reynolds Number of 10,000 are presented in Figure 7.28.

The isentropic Mach number compares quite well with Arts '[3°1 computations and the

experimental results. [3°1 However, the shock on the suction surface remains smeared

and the flow upstream of it under-expanded due to viscous smearing which occurs in

regions of high adverse pressure gradients. A large portion of low-speed flow exists

near the stagnation point, seen by the delayed onset of boundary layer development on

the pressure surface (Contour Plot). Laminar separation can be seen occurring at about

40% of the blade chord on the suction surface (velocity vectors).

Figure 7.29 shows the convergence histories for this case. 1 and 3 grid convergence

rates are plotted versus Multigrid cycles and CPU time. Multigrid produces substantial

savings for this case.
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Figure 7.24. 73x17 Computational Mesh for Inviscid Turbine Calculations. (a) Global
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Figure 7.27. 129x41 Computational Mesh for Viscous Turbine Calculations. (a) Global

View (b) Leading Edge Detail (c) Trailing Edge Detail
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CHAPTER 8 - CONCLUSIONS

8.1 Major Contributions and Summary of Results

This work has presented initial research into the effects of coarse-mesh boundary

conditions on the convergence of Multigrid Acceleration. An explicit Multigrid

algorithm has been written and validated for a variety of both inviscid and viscous flow

computations. The basic algorithm has been fashioned after Jameson's finite-volume

Multigrid scheme which utilizes explicit, Runge-Kutta time-stepping. Forcing terms-

have been derived and added to the coarse-mesh boundary conditions which permits

them to be solved with fine-mesh accuracy, i.e., without the coarse-mesh truncation

error polluting the fine mesh solution.

In order to derive the correct interpolation procedure, or transfer operator, for the

solution at boundary points, a new, general approach to formulating the governing

equations on the coarse mesh levels has also been presented. In this approach, the

equations on the coarse-meshes have been viewed as a filtered sub-set of the fine-mesh

equations, and a general filtering operator has been derived which models this filtering

process. This approach is based on the fact that certain information is not resolved on

the coarse-mesh due to the increased mesh spacing, and, therefore, is "filtered out". By

applying the filter to the governing fine-mesh equations, a formal description between

these and the coarse-mesh equations is given. Then, by specifying a discrete form of
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the filter, thediscrete coarse-mesh equations may be formulated. The advantage to this

formulation is that any number of Multigrid schemes may be formed by specification of

different discrete filters. In this work, the filter was chosen such that Jameson's

Multigrid scheme was obtained. Then, the boundary transfer operator and coarse-mesh

boundary forcing terms were derived.

In summary, the major contributions that have been presented in this work are:

A new, general approach to obtaining the coarse-mesh governing equations in

partial differential form, where they arc formally related to the fine-mesh

equations

-- Formulation of a boundary transfer operator that is consistent with the interior
scheme

Derivation of forcing terms for the coarse-mesh boundary conditions

Demonstration of the ability of these forcing terms to allow the coarse-mesh--

boundary conditions to be applied on any number of mesh levels with fine-mesh"

accuracy

Flow calculations were performed for inviscid channel flow over a circular-arc

Mach number distribution

dissipation model.

Implementing the coarse-mesh boundary conditions without forcing terms

introduced coarse-mesh truncation errors into the fine-mesh solutions. This was

apparent in all cases except the supersonic bump and the VKI turbine blade. For these

bump for subsonic, transonic, and supersonic speeds, a viscous flat plate, viscous

subsonic channel flow over a circular-arc bump, and inviscid and viscous flow over a

VKI gas turbine rotor blade. Good agreement with other results was seen in all cases,

with only a few minor discrepancies occurring. The discrepancies which occurred in

the viscous bump velocity profiles (Figure 7.18c-e) and the inviscid turbine isentropic

(Figure 7.25a) seemed to be related to the artificial
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2 cases,the truncation-error was apparently lower than the local round-off error. The

error introduced into the fine-mesh solution increased as the number of mesh levels

increased (Figures 7.4,7.20) due to the larger mesh spacings on the coarsest mesh.

With forcing terms, however, the fine-mesh accuracy was retained for any number of

mesh levels used. This becomes very important as problems increase in size and more

mesh-levels are used. The problems here have used relatively coarse initial meshes

with few mesh levels in the Multigrid cycle. In larger applications which don't use

forcing terms in the boundary conditions, the number of mesh levels that could possibly

be used would be restricted due to the error that is introduced into the fine mesh

solution. This would consequently reduce the efficiency of the Multigrid solution..

Therefore, the forcing terms, by permitting the maximum number of mesh levels to be

used, increase Multigrid efficiency even though they don't actually increase

convergence rates.

The forcing terms along the solid boundaries for the viscous problems were stated

(Chapter 6) as applying a partial slip condition as the mesh becomes too coarse to

accurately resolve the boundary layer. As the mesh spacing scale on the coarsest mesh

level exceeds the length scale of the boundary layer, this should be equivalent to

enforcing flow tangency along the surface. However, when flow tangency is explicitly

applied, it was shown that the forcing terms are still required to produce fine-mesh

accuracy (Figures 7.15, 7.21).

The efficiency of Multigrid acceleration was seen to decrease with increasing Mach

number for the inviscid channel flow cases. However, this may be attributed to the
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increasein efficiency of the single-mesh solutions as Mach Number increases (Figure

7.1 la). The Multigrid convergence rates for the 3 cases were approximately the same,

with slightly reduced performance in the supersonic case (Figure 7.11 b). The efficiency

of Multigrid acceleration for the flat plate, viscous bump, and viscous turbine blade

problems was greater in terms of Multigrid cycles than in terms of the actual work

performed, measured in CPU time (Figures 7.16c,d 7.22c,d 7.29c,d). This is typical of

viscous problems, and is due to the additional work required to evaluate the viscous

fluxes.

8.2 Future Work

The general Multigrid approach that was formulated may be used to derive any"

number of discrete Multigrid schemes based on a specified filter, or prescribed method

of transferring the solution and residuals. In this work, only one such filter was looked

at: the simple 4-cell volume weighted averaging as given in Jameson's scheme. Future

work may entail the derivation of various other filters and a study of their effect on the

performance of Multigrid acceleration.

Further study could also be performed into the reasons behind the effect of Mach

number on convergence, based on the observations made for the inviscid channel flow

problem. For the Multigrid solutions to this case, not much difference existed between

the convergence rates, although the supersonic Multigrid convergence was the slowest

of the three, exactly opposite from the single-mesh convergence rates.

Finally, a more robust dissipation model could be pursued. Some difficulties axe

realized when performing Euler calculations on very fine, highly stretched meshes,
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possibly due to the scaling that is used. Alternative scaling theories could be studied,

i.e., based on something other that the maximum spectral radii of the convective

Jacobian matrices.
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